Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Influenza Other Respir Viruses ; 18(4): e13282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622776

ABSTRACT

INTRODUCTION: Human respiratory syncytial virus (RSV) is one of the most frequent causes of respiratory infections in children under 5 years of age, but its socioeconomic impact and burden in primary care settings is still little studied. METHODS: During the 2022/2023 winter season, 55 pediatricians from five Italian regions participated in our community-based study. They collected a nasal swab for RSV molecular test from 650 patients under the age of 5 with acute respiratory infections (ARIs) and performed a baseline questionnaire. The clinical and socioeconomic burden of RSV disease in primary care was evaluated by two follow-up questionnaires completed by the parents of positive children on Days 14 and 30. RESULTS: RSV laboratory-confirmed cases were 37.8% of the total recruited ARI cases, with RSV subtype B accounting for the majority (65.4%) of RSV-positive swabs. RSV-positive children were younger than RSV-negative ones (median 12.5 vs. 16.5 months). The mean duration of symptoms for all children infected by RSV was 11.47 ± 6.27 days. We did not observe substantial differences in clinical severity between the two RSV subtypes, but RSV-A positive patients required more additional pediatric examinations than RSV-B cases. The socioeconomic impact of RSV infection was considerable, causing 53% of children to be absent from school, 46% of parents to lose working days, and 25% of families to incur extra costs. CONCLUSIONS: Our findings describe a baseline of the RSV disease burden in primary care in Italy before the introduction of upcoming immunization strategies.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Child , Infant , Child, Preschool , Respiratory Syncytial Virus Infections/epidemiology , Seasons , Italy/epidemiology , Cost of Illness , Primary Health Care , Hospitalization
2.
Int J Infect Dis ; 142: 106998, 2024 May.
Article in English | MEDLINE | ID: mdl-38458420

ABSTRACT

OBJECTIVES: Following the alert of echovirus 11 (E-11) infection in neonates in EU/EEA Member States, we conducted an investigation of E-11 circulation by gathering data from community and hospital surveillance of enterovirus (EV) in northern Italy from 01 August 2021 to 30 June 2023. METHODS: Virological results of EVs were obtained from the regional sentinel surveillance database for influenza-like illness (ILI) in outpatients, and from the laboratory database of ten hospitals for inpatients with either respiratory or neurological symptoms. Molecular characterization of EVs was performed by sequence analysis of the VP1 gene. RESULTS: In our ILI series, the rate of EV-positive specimens showed an upward trend from the end of May 2023, culminating at the end of June, coinciding with an increase in EV-positive hospital cases. The E-11 identified belonged to the D5 genogroup and the majority (83%) were closely associated with the novel E-11 variant, first identified in severe neonatal infections in France since 2022. E-11 was identified sporadically in community cases until February 2023, when it was also found in hospitalized cases with a range of clinical manifestations. All E-11 cases were children, with 14 out of 24 cases identified through hospital surveillance. Of these cases, 60% were neonates, and 71% had severe clinical manifestations. CONCLUSION: Baseline epidemiological data collected since 2021 through EV laboratory-based surveillance have rapidly tracked the E-11 variant since November 2022, alongside its transmission during the late spring of 2023.


Subject(s)
Enterovirus Infections , Enterovirus , Virus Diseases , Child , Infant, Newborn , Humans , Infant , Enterovirus/genetics , Sentinel Surveillance , Inpatients , Enterovirus Infections/diagnosis , Enterovirus B, Human/genetics , Italy/epidemiology , Hospitals , Phylogeny
3.
Viruses ; 15(10)2023 09 23.
Article in English | MEDLINE | ID: mdl-37896765

ABSTRACT

(1) Background. Exploring the evolution of SARS-CoV-2 load and clearance from the upper respiratory tract samples is important to improving COVID-19 control. Data were collected retrospectively from a laboratory dataset on SARS-CoV-2 load quantified in leftover nasal pharyngeal swabs (NPSs) collected from symptomatic/asymptomatic individuals who tested positive to SARS-CoV-2 RNA detection in the framework of testing activities for diagnostic/screening purpose during the 2020 and 2021 winter epidemic waves. (2) Methods. A Statistical approach (quantile regression and survival models for interval-censored data), novel for this kind of data, was applied. We included in the analysis SARS-CoV-2-positive adults >18 years old for whom at least two serial NPSs were collected. A total of 262 SARS-CoV-2-positive individuals and 784 NPSs were included: 193 (593 NPSs) during the 2020 winter wave (before COVID-19 vaccine introduction) and 69 (191 NPSs) during the 2021 winter wave (all COVID-19 vaccinated). We estimated the trend of the median value, as well as the 25th and 75th centiles of the viral load, from the index episode (i.e., first SARS-CoV-2-positive test) until the sixth week (2020 wave) and the third week (2021 wave). Interval censoring methods were used to evaluate the time to SARS-CoV-2 clearance (defined as Ct < 35). (3) Results. At the index episode, the median value of viral load in the 2021 winter wave was 6.25 log copies/mL (95% CI: 5.50-6.70), and the median value in the 2020 winter wave was 5.42 log copies/mL (95% CI: 4.95-5.90). In contrast, 14 days after the index episode, the median value of viral load was 3.40 log copies/mL (95% CI: 3.26-3.54) for individuals during the 2020 winter wave and 2.93 Log copies/mL (95% CI: 2.80-3.19) for those of the 2021 winter wave. A significant difference in viral load shapes was observed among age classes (p = 0.0302) and between symptomatic and asymptomatic participants (p = 0.0187) for the first wave only; the median viral load value is higher at the day of episode index for the youngest (18-39 years) as compared to the older (40-64 years and >64 years) individuals. In the 2021 epidemic, the estimated proportion of individuals who can be considered infectious (Ct < 35) was approximately half that of the 2020 wave. (4) Conclusions. In case of the emergence of new SARS-CoV-2 variants, the application of these statistical methods to the analysis of virological laboratory data may provide evidence with which to inform and promptly support public health decision-makers in the modification of COVID-19 control measures.


Subject(s)
COVID-19 , Adult , Humans , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Vaccines , RNA, Viral , Retrospective Studies , Pharynx
4.
Diagn Microbiol Infect Dis ; 107(4): 116070, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37714081

ABSTRACT

Since the beginning of the pandemic, SARS-CoV-2 has shown genetic variability. All the variants that have sustained pandemic waves have shown several mutations, especially in the Spike protein that could affect viral pathogenesis. A total of 15,729 respiratory samples, collected between December 2020 and August 2022, have been included in this study. We report the circulation of SARS-CoV-2 variants in the Lombardy region, Italy, in a 2-year study period. Alpha, Delta, and Omicron variants became predominant causing the majority of cases whereas Beta or Gamma variants mostly caused local outbreaks. Next-generation sequencing revealed several mutations and few deletions in all of the main variants. For example, 147 mutations were observed in the Spike protein of Omicron sublineages; 20% of these mutations occurred in the receptor-binding domain region.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Disease Outbreaks
5.
Front Public Health ; 11: 1224175, 2023.
Article in English | MEDLINE | ID: mdl-37601177

ABSTRACT

Background: The impact of seasonal influenza vaccination (SIV) on mortality is still controversial; some studies have claimed that increasing vaccination coverage rates is beneficial, while others have found no significant association. This study aimed to construct a granular longitudinal dataset of local VCRs and assess their effect on pneumonia- and influenza-related (P&I) mortality among Italian adults aged ≥ 65 years. Methods: NUTS-3 (nomenclature of territorial units for statistics) level data on SIV coverage were collected via a survey of local data holders. Fixed- and random-effects panel regression modeling, when adjusted for potential confounders, was performed to assess the association between local SIV coverage rates and P&I mortality in older adults. Results: A total of 1,144 local VCRs from 2003 to 2019 were ascertained. In the fully adjusted fixed-effects model, each 1% increase in vaccination coverage was associated (P < 0.001) with a 0.6% (95% CI: 0.3-0.9%) average over-time decrease in P&I mortality. With an annual average of 9,293 P&I deaths in Italy, this model suggested that 56 deaths could have been avoided each year by increasing SIV coverage by 1%. The random-effects model produced similar results. The base-case results were robust in a sensitivity analysis. Conclusion: Over the last two decades, Italian jurisdictions with higher SIV uptake had, on average, fewer P&I deaths among older adults. Local policy-makers should implement effective strategies to increase SIV coverage in the Italian senior population.


Subject(s)
Influenza, Human , Humans , Aged , Influenza, Human/prevention & control , Vaccination , Vaccination Coverage , Administrative Personnel , Italy
6.
Sci Total Environ ; 902: 166539, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37625729

ABSTRACT

Wastewater-based epidemiology (WBE) was conducted to track Enteroviruses (EVs) circulation in the Milan metropolitan area (Northern Italy) during Covid-19 pandemic (March 2020-December 2022). 202 composite 24-hour wastewater samples (WWSs) were collected weekly from March 24, 2020, to December 29, 2022 at the inlet of two wastewater treatment plants (WWTP) in Milan (1.5 million inhabitants). EV-RNA was quantified and molecular characterization of non-polio EVs (NPEV) was performed by Sanger sequence analysis. Data from WWS were matched with virological data collected in the framework of Influenza-Like Illness (ILI) surveillance in the same place and time. EV-RNA was identified in 88.2 % of WWSs. The peak in EVs circulation was observed in late August 2020 (upon conclusion of the first national lockdown), in late August 2021, and in mid-April 2022. EV-RNA concentration in WWS (normalized as copies/d/1000 people) at peak of circulation presented a yearly increase (2020: 2.47 × 1010; 2021: 6.81 × 1010; 2022: 2.14 × 1011). This trend overlapped with trend in EV-positivity rate in ILI cases, expanded from 21.7 % in 2021 to 55.6 % in 2022. EV trends in WWS preceded clinical sample detections in 2021 and 2022 by eight and five weeks, respectively, acting as an early warning of outbreak. Although sequencing of EV-positive WWSs revealed the presence of multiple EV strains, typing remained inconclusive. Molecular characterization of EVs in clinical samples revealed the co-circulation of several genotypes: EV-A accounted for 60 % of EVs, EV-B for 16.7 %, EV-D68 for 23.3 %. EVs were circulating in Milan metropolitan area between March 2020 and December 2022. The epidemiological trends unfolded the progressive accumulation of EV transmission in the population after removal of Covid-19 restrictions. The increased circulation of EVs in 2021-2022 was identified at least 35 days in advance compared to the analysis of clinical data. The inconclusive results of Sanger sequencing lookout for improvement and innovative molecular approaches to deepen track EVs.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Humans , Wastewater-Based Epidemiological Monitoring , Pandemics , COVID-19/epidemiology , Communicable Disease Control , Enterovirus Infections/epidemiology , Wastewater , RNA , Phylogeny
7.
EBioMedicine ; 95: 104745, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37566927

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of hospitalisation and mortality in young children globally. The social distancing measures implemented against COVID-19 in Lombardy (Italy) disrupted the typically seasonal RSV circulation during 2019-2021 and caused substantially more hospitalisations during 2021-2022. The primary aim of this study is to quantify the immunity gap-defined as the increased proportion of the population naïve to RSV infection following the relaxation of COVID-19 restrictions in Lombardy, which has been hypothesised to be a potential cause of the increased RSV burden in 2021-2022. METHODS: We developed a catalytic model to reconstruct changes in the age-dependent susceptibility profile of the Lombardy population throughout the COVID-19 pandemic. The model is calibrated to routinely collected hospitalisation, syndromic, and virological surveillance data and tested for alternative assumptions on age-dependencies in the risk of RSV infection throughout the pandemic. FINDINGS: We estimate that the proportion of the Lombardy population naïve to RSV infection increased by 60.8% (95% CrI: 55.2-65.4%) during the COVID-19 pandemic: from 1.4% (95% CrI: 1.3-1.6%) in 2018-2019 to 2.3% (95% CrI: 2.2-2.5%) before the 2021-2022 season, corresponding to an immunity gap of 0.87% (95% CrI: 0.87-0.88%). We found evidence of heterogeneity in RSV transmission by age, suggesting that the COVID-19 restrictions had variable impact on the contact patterns and risk of RSV infection across ages. INTERPRETATION: We estimate a substantial increase in the population-level susceptibility to RSV in Lombardy during 2019-2021, which contributed to an increase in primary RSV infections in 2021-2022. FUNDING: UK Medical Research Council (MRC), UK Foreign, Commonwealth & Development Office (FCDO), EDCTP2 programme, European Union, Wellcome Trust, Royal Society, EU-MUR PNRR INF-ACT.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Infant , Child, Preschool , Pandemics , COVID-19/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Italy/epidemiology
8.
J Clin Med ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37445500

ABSTRACT

In developed countries, congenital cytomegalovirus (cCMV) infection is the most common congenital viral infection, representing the leading non-genetic cause of sensorineural hearing loss (HL). Diagnosis of cCMV infection can be performed by detection of CMV DNA in urine or saliva within 2-3 weeks after birth, or later in dried blood samples on the Guthrie card. Currently, there are many controversies regarding the preventive, diagnostic, and therapeutic approaches to cCMV infection. HL secondary to cCMV is highly variable in onset, side, degree, audiometric configuration, and threshold changes over time. Therefore, it is of paramount importance to perform a long and thorough audiological follow-up in children with cCMV infection to ensure early identification and prompt treatment of progressive and/or late-onset HL. Early cochlear implantation appears to be a valid solution not only for children with bilateral profound HL, but also for those with single-sided deafness, improving localization ability and understanding speech in noisy environments. Moreover, the decision to apply a unilateral cochlear implant in children with cCMV is strengthened by the non-negligible possibility of hearing deterioration of the contralateral ear over time.

9.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36946379

ABSTRACT

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Subject(s)
Adaptive Immunity , Antiviral Agents , COVID-19 Drug Treatment , Lactams , Animals , Mice , COVID-19/immunology , SARS-CoV-2 , Antiviral Agents/administration & dosage , Adaptive Immunity/drug effects , Lactams/administration & dosage , Memory T Cells/immunology , B-Lymphocytes/immunology , Mice, Inbred C57BL
10.
Molecules ; 28(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36985820

ABSTRACT

Lysozyme (E.C. 3.2.1.17), an about 14 kDa protein and pI 11, widely spread in nature, is present in humans mainly in milk, saliva, and intestinal mucus as a part of innate defense mechanisms. It is endowed with antimicrobial activity due to its action as an N-acetylmuramidase, cleaving the 1-4ß glycosidic linkage in the peptidoglycan layer of Gram-positive bacteria. This antimicrobial activity is exerted only against a limited number of Gram-negative bacteria. Different action mechanisms are proposed to explain its activity against Gram-negative bacteria, viruses, and fungi. The antiviral activity prompted the study of a possible application of lysozyme in the treatment of SARS-CoV-2 infections. Among the different sources of lysozyme, the chicken egg albumen was chosen, being the richest source of this protein (c-type lysozyme, 129 amino acids). Interestingly, the activity of lysozyme hydrochloride against SARS-CoV-2 was related to the heating (to about 100 °C) of this molecule. A chemical-physical characterization was required to investigate the possible modifications of native lysozyme hydrochloride by heat treatment. The FTIR analysis of the two preparations of lysozyme hydrochloride showed appreciable differences in the secondary structure of the two protein chains. HPLC and NMR analyses, as well as the enzymatic activity determination, did not show significant modifications.


Subject(s)
COVID-19 , Muramidase , Humans , Muramidase/chemistry , Hot Temperature , SARS-CoV-2/metabolism , Gram-Negative Bacteria/metabolism , Antiviral Agents/pharmacology
11.
BMC Infect Dis ; 23(1): 134, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882698

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infections worldwide. While historically RSV research has been focused on children, data on RSV infection in adults are limited. The goal of this study was to establish the prevalence of RSV in community-dwelling Italian adults and analyze its genetic variability during the 2021/22 winter season. METHODS: In this cross-sectional study, a random sample of naso-/oropharyngeal specimens from symptomatic adults seeking for SARS-CoV-2 molecular testing between December 2021 and March 2022 were tested for RSV and other respiratory pathogens by means of reverse-transcription polymerase chain reaction. RSV-positive samples were further molecularly characterized by sequence analysis. RESULTS: Of 1,213 samples tested, 1.6% (95% CI: 0.9-2.4%) were positive for RSV and subgroups A (44.4%) and B (55.6%) were identified in similar proportions. The epidemic peak occurred in December 2021, when the RSV prevalence was as high as 4.6% (95% CI: 2.2-8.3%). The prevalence of RSV detection was similar (p = 0.64) to that of influenza virus (1.9%). All RSV A and B strains belonged to the ON1 and BA genotypes, respectively. Most (72.2%) RSV-positive samples were also positive for other pathogens being SARS-CoV-2, Streptococcus pneumoniae and rhinovirus the most frequent. RSV load was significantly higher among mono-detections than co-detections. CONCLUSION: During the 2021/22 winter season, characterized by the predominant circulation of SARS-CoV-2 and some non-pharmaceutical containment measures still in place, a substantial proportion of Italian adults tested positive for genetically diversified strains of both RSV subtypes. In view of the upcoming registration of vaccines, establishment of the National RSV surveillance system is urgently needed.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Child , Adult , Humans , Cross-Sectional Studies , Independent Living , Seasons , COVID-19/epidemiology , SARS-CoV-2/genetics , Respiratory Syncytial Virus, Human/genetics
12.
PLoS One ; 18(3): e0282782, 2023.
Article in English | MEDLINE | ID: mdl-36893137

ABSTRACT

Global mitigation strategies to tackle the threat posed by SARS-CoV-2 have produced a significant decrease of the severity of 2020/21 seasonal influenza, which might result in a reduced population natural immunity for the upcoming 2021/22 influenza season. To predict the spread of influenza virus in Italy and the impact of prevention and control measures, we present an age-structured Susceptible-Exposed-Infectious-Removed (SEIR) model including the role of social mixing patterns and the impact of age-stratified vaccination strategies and Non-Pharmaceutical Interventions (NPIs) such as school closures, partial lockdown, as well as the adoption of personal protective equipment and the practice of hand hygiene. We find that vaccination campaigns with standard coverage would produce a remarkable mitigation of the spread of the disease in moderate influenza seasons, making the adoption of NPIs unnecessary. However, in case of severe seasonal epidemics, a standard vaccination coverage would not be sufficiently effective in fighting the epidemic, thus implying that a combination with the adoption of NPIs is necessary to contain the disease. Alternatively, our results show that the enhancement of the vaccination coverage would reduce the need to adopt NPIs, thus limiting the economic and social impacts that NPIs might produce. Our results highlight the need to respond to the influenza epidemic by strengthening the vaccination coverage.


Subject(s)
COVID-19 , Influenza, Human , Humans , SARS-CoV-2 , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Disease Outbreaks , Italy/epidemiology
13.
Virus Res ; 324: 199033, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36581046

ABSTRACT

AIMS: To assess influenza viruses (IVs) circulation and to evaluate A(H3N2) molecular evolution during the 2021-2022 season in Italy. MATERIALS AND METHODS: 12,393 respiratory specimens (nasopharyngeal swabs or broncho-alveolar lavages) collected from in/outpatients with influenza illness in the period spanning from January 1, 2022 (week 2022-01) to May 31, 2022 (week 2022-22) were analysed to identify IV genome and were molecularly characterized by 12 laboratories throughout Italy. A(H3N2) evolution was studied by conducting an in-depth phylogenetic analysis of the hemagglutinin (HA) gene sequences. The predicted vaccine efficacy (pVE) of vaccine strain against circulating A(H3N2) viruses was estimated using the sequence-based Pepitope model. RESULTS: The overall IV-positive rate was 7.2% (894/12,393), all were type A IVs. Almost all influenza A viruses (846/894; 94.6%) were H3N2 that circulated in Italy with a clear epidemic trend, with 10% positivity rate threshold crossed for six consecutive weeks from week 2022-11 to week 2022-16. According to the phylogenetic analysis of a subset of A(H3N2) strains (n=161), the study HA sequences were distributed into five different genetic clusters, all of them belonging to the clade 3C.2a, sub-clade 3C.2a1 and the genetic subgroup 3C.2a1b.2a.2. The selective pressure analysis of A(H3N2) sequences showed evidence of diversifying selection particularly in the amino acid position 156. The comparison between the predicted amino acid sequence of the 2021-2022 vaccine strain (A/Cambodia/e0826360/2020) and the study strains revealed 65 mutations in 59 HA amino acid positions, including the substitution H156S and Y159N in antigenic site B, within major antigenic sites adjacent to the receptor-binding site, suggesting the presence of drifted strains. According to the sequence-based Pepitope model, antigenic site B was the dominant antigenic site and the p(VE) against circulating A(H3N2) viruses was estimated to be -28.9%. DISCUSSION AND CONCLUSION: After a long period of very low IV activity since public health control measures have been introduced to face COVID-19 pandemic, along came A(H3N2) with a new phylogenetic makeup. Although the delayed 2021-2022 influenza season in Italy was characterized by a significant reduction of the width of the epidemic curve and in the intensity of the influenza activity compared to historical data, a marked genetic diversity of the HA of circulating A(H3N2) strains was observed. The identification of the H156S and Y159N substitutions within the main antigenic sites of most HA sequences also suggested the circulation of drifted variants with respect to the 2021-2022 vaccine strain. Molecular surveillance plays a critical role in the influenza surveillance architecture and it has to be strengthened also at local level to timely assess vaccine effectiveness and detect novel strains with potential impact on public health.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Hemagglutinins , Influenza A Virus, H3N2 Subtype/genetics , Phylogeny , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Pandemics , Seasons , COVID-19/epidemiology , Epitopes , Italy/epidemiology
14.
Clin Exp Med ; 23(6): 2725-2737, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36522554

ABSTRACT

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause a high burden of disease, particularly in children and the elderly. With the aim to add knowledge on RSV and HMPV infections in Italy, a prospective, multicenter study was conducted by eight centers of the Working Group on Respiratory Virus Infections (GLIViRe), from December 2018-April 2019. Weekly distribution and patients' demographic and clinical data were compared in 1300 RSV and 222 HMPV-positive cases. Phylogenetic analysis of the G-glycoprotein coding region was performed to characterize circulating strains. RSV positivity ranged from 6.4% in outpatients of all ages to 31.7% in hospitalized children; HMPV positivity was 4-1.2% with no age-association. RSV season peaked in February and ended in mid-April: HMPV circulation was higher when RSV decreased in early spring. RSV was more frequent in infants, whereas HMPV infected comparatively more elderly adults; despite, their clinical course was similar. RSV-B cases were two-thirds of the total and had similar clinical severity compared to RSV-A. Phylogenetic analysis showed the circulation of RSV-A ON1 variants and the predominance of RSV-B genotype BA10. HMPV genotype A2c was the prevalent one and presented insertions of different lengths in G. This first multicenter Italian report on seasonality, age-specific distribution, and clinical presentation of RSV and HMPV demonstrated their substantial disease burden in young patients but also in the elderly. These data may provide the basis for a national respiratory virus surveillance network.


Subject(s)
Metapneumovirus , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Child , Adult , Humans , Aged , Metapneumovirus/genetics , Seasons , Phylogeny , Prospective Studies , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics
15.
Microorganisms ; 10(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363737

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) represent an alarming threat as they show altered biological behavior and may escape vaccination effectiveness. Broad-spectrum antivirals could play an important role to control infections. The activity of Echinacea purpurea (Echinaforce® extract, EF) against (i) VOCs B1.1.7 (alpha), B.1.351.1 (beta), P.1 (gamma), B1.617.2 (delta), AV.1 (Scottish), B1.525 (eta), and B.1.1.529.BA1 (omicron); (ii) SARS-CoV-2 spike (S) protein-pseudotyped viral particles and reference strain OC43 as well as (iii) wild type SARS-CoV-2 (Hu-1) was analyzed. Molecular dynamics (MD) were applied to study the interaction of Echinacea's phytochemical markers with known pharmacological viral and host cell targets. EF extract broadly inhibited the propagation of all investigated SARS-CoV-2 VOCs as well as the entry of SARS-CoV-2 pseudoparticles at EC50's ranging from 3.62 to 12.03 µg/mL. The preventive addition of 25 µg/mL EF to epithelial cells significantly reduced sequential infection with SARS-CoV-2 (Hu-1) and OC43. MD analyses showed constant binding affinities to VOC-typical S protein variants for alkylamides, caftaric acid, and feruloyl-tartaric acid in EF extract and interactions with serine protease TMPRSS-2. EF extract demonstrated stable virucidal activity across seven tested VOCs, likely due to the constant affinity of the contained phytochemical substances to all spike variants. A possible interaction of EF with TMPRSS-2 partially would explain the cell protective benefits of the extract by the inhibition of membrane fusion and cell entry. EF may therefore offer a supportive addition to vaccination endeavors in the control of existing and future SARS-CoV-2 virus mutations.

16.
Int J Infect Dis ; 125: 164-169, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36332902

ABSTRACT

OBJECTIVES: In this study, we aimed to investigate the relative vaccine effectiveness (rVE) of the MF59-adjuvanted trivalent (aTIV) and non-adjuvanted quadrivalent (QIVe) egg-based standard-dose vaccines against severe laboratory-confirmed influenza. METHODS: This test-negative case-control study was conducted in a hospital setting during four recent Italian influenza seasons (from 2018/19 to 2021/22). The clinical outcome was severe acute respiratory infection (SARI) with laboratory confirmation diagnosed among subjects aged ≥65 years. rVE of aTIV versus QIVe was estimated through propensity score matching followed by logistic regression. RESULTS: The influenza virus circulated to a significant extent only during the 2018/19 and 2019/20 seasons. The final population included 512 vaccinated older adults, of which 83 were cases and 429 were test-negative controls. aTIV and QIVe users differed substantially from the point of view of several baseline characteristics. The propensity score adjusted rVE of aTIV vs QIVe was 59.2% (95% CI: 14.6%, 80.5%), 54.7% (95% CI: -28.7%, 84.0%) and 56.9% (95% CI: -7.8%, 82.8%) against any influenza, A(H1N1)pdm09 and A(H3N2), respectively. CONCLUSION: aTIV was more effective than QIVe in preventing laboratory-confirmed SARI. The benefits of aTIV may be obscured by confounding indication.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Aged , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Case-Control Studies , Squalene , Polysorbates , Adjuvants, Immunologic , Vaccines, Combined
17.
Viruses ; 14(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36366449

ABSTRACT

The quantification and molecular characterization of the AdV genome in urban wastewater samples (WWSs) collected weekly at a wastewater treatment plant (WWTP) in Milan from 1 January 2021 (week 2021-01) to 1 May 2022 (week 2022-17) were performed. The concentration of the AdV genome was graphically compared with the AdV positive rate observed in the respiratory/gastrointestinal specimens from individuals hospitalized with acute respiratory/gastrointestinal infections collected from one of the major hospitals in Milan in the same time series. An increase in the AdV circulation in WWSs was seen from November 2021, peaking in March 2022 and overlapped with an increase in the AdV positive rate in respiratory/fecal samples from individuals hospitalized with acute respiratory/gastrointestinal infections. The molecular characterization of the hexon hypervariable region of loop 1 of AdV revealed the presence of the species F type 41 in WWSs collected from February 2022 to April 2022. The wastewater surveillance of AdV can provide crucial epidemiological characteristics regarding AdV, particularly where no clinical surveillance is ongoing. The increase in the AdV circulation in Milan both in WWSs and clinical samples temporally overlapped with the outbreak of severe acute pediatric hepatitis observed in Europe and needs to be better investigated.


Subject(s)
Adenoviridae Infections , Respiratory Tract Infections , Humans , Child , Adenoviridae/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , Acute Disease
18.
Vaccines (Basel) ; 10(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36016246

ABSTRACT

(1) Background: Over the last few years, there has been growing interest in the whole genome sequencing (WGS) of rapidly mutating pathogens, such as influenza viruses (IVs), which has led us to carry out in-depth studies on viral evolution in both research and diagnostic settings. We aimed at describing and determining the validity of a WGS protocol that can obtain the complete genome sequence of A(H3N2) IVs directly from clinical specimens. (2) Methods: RNA was extracted from 80 A(H3N2)-positive respiratory specimens. A one-step RT-PCR assay, based on the use of a single set of specific primers, was used to retro-transcribe and amplify the entire IV type A genome in a single reaction, thus avoiding additional enrichment approaches and host genome removal treatments. Purified DNA was quantified; genomic libraries were prepared and sequenced by using Illumina MiSeq platform. The obtained reads were evaluated for sequence quality and read-pair length. (3) Results: All of the study specimens were successfully amplified, and the purified DNA concentration proved to be suitable for NGS (at least 0.2 ng/µL). An acceptable coverage depth for all eight genes of influenza A(H3N2) virus was obtained for 90% (72/80) of the clinical samples with viral loads >105 genome copies/mL. The mean depth of sequencing ranged from 105 to 200 reads per position, with the majority of the mean depth values being above 103 reads per position. The total turnaround time per set of 20 samples was four working days, including sequence analysis. (4) Conclusions: This fast and reliable high-throughput sequencing protocol should be used for influenza surveillance and outbreak investigation.

19.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35741293

ABSTRACT

For diagnosing SARS-CoV-2 infection and for monitoring its spread, the implementation of external quality assessment (EQA) schemes is mandatory to assess and ensure a standard quality according to national and international guidelines. Here, we present the results of the 2020, 2021, 2022 EQA schemes in Lombardy region for assessing the quality of the diagnostic laboratories involved in SARS-CoV-2 diagnosis. In the framework of the Quality Assurance Programs (QAPs), the routinely EQA schemes are managed by the regional reference centre for diagnostic laboratories quality (RRC-EQA) of the Lombardy region and are carried out by all the diagnostic laboratories. Three EQA programs were organized: (1) EQA of SARS-CoV-2 nucleic acid detection; (2) EQA of anti-SARS-CoV-2-antibody testing; (3) EQA of SARS-CoV-2 direct antigens detection. The percentage of concordance of 1938 molecular tests carried out within the SARS-CoV-2 nucleic acid detection EQA was 97.7%. The overall concordance of 1875 tests carried out within the anti-SARS-CoV-2 antibody EQA was 93.9% (79.6% for IgM). The overall concordance of 1495 tests carried out within the SARS-CoV-2 direct antigens detection EQA was 85% and it was negatively impacted by the results obtained by the analysis of weak positive samples. In conclusion, the EQA schemes for assessing the accuracy of SARS-CoV-2 diagnosis in the Lombardy region highlighted a suitable reproducibility and reliability of diagnostic assays, despite the heterogeneous landscape of SARS-CoV-2 tests and methods. Laboratory testing based on the detection of viral RNA in respiratory samples can be considered the gold standard for SARS-CoV-2 diagnosis.

20.
Microorganisms ; 10(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744739

ABSTRACT

Enteroviruses (Enterovirus genus, Picornaviridae family) are distributed worldwide and are among the most common causes of human disease globally [...].

SELECTION OF CITATIONS
SEARCH DETAIL
...